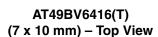
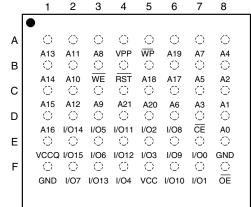
Features


- 64-megabit (4M x 16) Flash Memory
- 2.7V 3.6V Read/Write
- High Performance
 - Asynchronous Access Time 70 ns
 - Page Mode Read Time 20 ns
- Sector Erase Architecture
 - Eight 4K Word Sectors with Individual Write Lockout
 - One Hundred Twenty-seven 32K Word Main Sectors with Individual Write Lockout
- Typical Sector Erase Time: 32K Word Sectors 700 ms; 4K Word Sectors 200 ms
- Four Plane Organization, Permitting Concurrent Read in Any of the Three Planes not Being Programmed/Erased
 - Memory Plane A: 16M Memory Including Eight 4K Word Sectors
 - Memory Plane B: 16M Memory Consisting of 32K Word Sectors
 - Memory Plane C: 16M Memory Consisting of 32K Word Sectors
 - Memory Plane D: 16M Memory Consisting of 32K Word Sectors
- Suspend/Resume Feature for Erase and Program
 - Supports Reading and Programming Data from Any Sector by Suspending Erase of a Different Sector
 - Supports Reading Any Word by Suspending Programming of Any Other Word
- Low-power Operation
 - 30 mA Active
 - 25 µA Standby
- 2.2V I/O Option Reduces Overall System Power
- VPP Pin for Write Protection and Accelerated Program/Erase Operations
- RESET Input for Device Initialization
- CBGA Package
- Top or Bottom Boot Block Configuration Available
- 128-bit Protection Register
- Common Flash Interface (CFI)


Description

The AT49BV6416C(T) is a 2.7-volt 64-megabit Flash memory. The memory is divided into multiple sectors and planes for erase operations. The device can be read or reprogrammed off a single 2.7V power supply, making it ideally suited for In-System programming. The device can operate in the asynchronous or page read mode.

Pin Configurations

Pin Name	Pin Function
I/O0 - I/O15	Data Inputs/Outputs
A0 - A21	Addresses
CE	Chip Enable
ŌE	Output Enable
WE	Write Enable
RESET	Reset
WP	Write Protect
VPP	Write Protection and Power Supply for Accelerated Program/Erase Operations
VCCQ	Output Power Supply

64-megabit (4M x 16) Page Mode 2.7-volt Flash Memory

AT49BV6416C AT49BV6416CT

Preliminary

The AT49BV6416C(T) is divided into four memory planes. A read operation can occur in any of the three planes which is not being programmed or erased. This concurrent operation allows improved system performance by not requiring the system to wait for a program or erase operation to complete before a read is performed. To further increase the flexibility of the device, it contains an Erase Suspend and Program Suspend feature. This feature will put the erase or program on hold for any amount of time and let the user read data from or program data to any of the remaining sectors. There is no reason to suspend the erase or program operation if the data to be read is in another memory plane.

The VPP pin provides data protection and faster programming and erase times. When the V_{PP} input is below 0.7V, the program and erase functions are inhibited. When V_{PP} is at 1.65V or above, normal program and erase operations can be performed. With V_{PP} at 12.0V, the program (Dual-word Program command) and erase operations are accelerated.

Device Operation

COMMAND SEQUENCES: When the device is first powered on, it will be in the read mode. Command sequences are used to place the device in other operating modes such as program and erase. The command sequences are written by applying a low pulse on the WE input with CE low and OE high or by applying a low-going pulse on the CE input with WE low and OE high. The address is latched on the first rising edge of the WE or CE. Valid data is latched on the rising edge of the WE or the CE pulse, whichever occurs first. The addresses used in the command sequences are not affected by entering the command sequences.

ASYNCHRONOUS READ: The AT49BV6416C(T) is accessed like an EPROM. When CE and OE are low and WE is high, the data stored at the memory location determined by the address pins are asserted on the outputs. The outputs are put in the high impedance state whenever CE or OE is high. This dual-line control gives designers flexibility in preventing bus contention.

PAGE READ: The page read operation of the device is controlled by $\overline{\text{CE}}$ and $\overline{\text{OE}}$ inputs. The page size is four words. The first word access of the page read is the same as the asynchronous read. The first word is read at an asynchronous speed of 70 ns. Once the first word is read, toggling A0 and A1 will result in subsequent reads within the page being output at a speed of 20 ns. The page read diagram is shown on page 22.

RESET: A RESET input pin is provided to ease some system applications. When <u>RESET</u> is at a logic high level, the device is in its standard operating mode. A low level on the <u>RESET</u> pin halts the present device operation and puts the outputs of the device in a high-impedance state. When a high level is reasserted on the <u>RESET</u> pin, the device returns to read mode.

ERASE: Before a word can be reprogrammed it must be erased. The erased state of the memory bits is a logical "1". The entire memory can be erased by using the Chip Erase command or individual planes can be erased by using the Plane Erase command or individual sectors can be erased by using the Sector Erase command.

CHIP ERASE: Chip E<u>rase</u> is a two-bus cycle operation. The automatic erase begins on the rising edge of the last WE pulse. Chip Erase does not alter the data of the protected sectors. The hardware reset during chip erase will stop the erase, but the data will be of an unknown state.

PLANE ERASE: As an alternative to a full Chip Erase, the device is organized into four planes that can be individually erased. The Plane Erase command is a two-bus cycle operation. The plane whose address is valid at the second rising edge of $\overline{\text{WE}}$ will be erased. The Plane Erase command does not alter the data in the protected sectors.

SECTOR ERASE: The device is organized into multiple sectors that can be individually erased. The Sector Erase command is a two-bus cycle operation. The sector whose address is valid at the second rising edge of $\overline{\text{WE}}$ will be erased provided the given sector has not been protected.

AT49BV6416C(T) [Preliminary]

WORD PROGRAMMING: The device is programmed on a word-by-word basis. Programming is accomplished via the internal device command register and is a two-bus cycle operation. The programming address and data are latched in the second cycle. The device will automatically generate the required internal programming pulses. Please note that a "0" cannot be programmed back to a "1"; only erase operations can convert "0"s to "1"s.

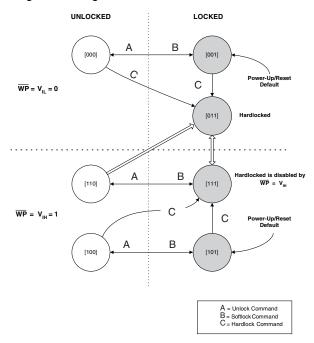
FLEXIBLE SECTOR PROTECTION: The AT49BV6416C(T) offers two sector protection modes, the Softlock and the Hardlock. The Softlock mode is optimized as sector protection for sectors whose content changes frequently. The Hardlock protection mode is recommended for sectors whose content changes infrequently. Once either of these two modes is enabled, the contents of the selected sector is read-only and cannot be erased or programmed. Each sector can be independently programmed for either the Softlock or Hardlock sector protection mode. At power-up and reset, all sectors have their Softlock protection mode enabled.

SOFTLOCK AND UNLOCK: The Softlock protection mode can be disabled by issuing a two-bus cycle Unlock command to the selected sector. Once a sector is unlocked, its contents can be erased or programmed. To enable the Softlock protection mode, a two-bus cycle Softlock command must be issued to the selected sector.

HARDLOCK AND WRITE PROTECT (\overline{WP}): The Hardlock sector protection mode operates in conjunction with the Write Protection (\overline{WP}) pin. The Hardlock sector protection mode can be enabled by issuing a two-bus cycle Hardlock software command to the selected sector. The state of the Write Protect pin affects whether the Hardlock protection mode can be overridden.

- When the WP pin is low and the Hardlock protection mode is enabled, the sector cannot be unlocked and the contents of the sector is read-only.
- When the WP pin is high, the Hardlock protection mode is overridden and the sector can be unlocked via the Unlock command.

To disable the Hardlock sector protection mode, the chip must be either reset or power cycled.


Table 1. Hardlock and Softlock Protection Configurations in Conjunction with \overline{WP}

V _{PP}	WP	Hard- lock	Soft- lock	Erase/ Prog Allowed?	Comments
V _{CC}	0	0	0	Yes	No sector is locked
V _{cc}	0	0	1	No	Sector is Softlocked. The Unlock command can unlock the sector.
V _{CC}	0	1	1	No	Hardlock protection mode is enabled. The sector cannot be unlocked.
V _{cc}	1	0	0	Yes	No sector is locked.
V _{CC}	1	0	1	No	Sector is Softlocked. The Unlock command can unlock the sector.
V _{cc}	1	1	0	Yes	Hardlock protection mode is overridden and the sector is not locked.
V _{CC}	1	1	1	No	Hardlock protection mode is overridden and the sector can be unlocked via the Unlock command.
V _{IL}	х	Х	х	No	Erase and Program Operations cannot be performed.

Figure 1. Sector Locking State Diagram

Note: 1. The notation [X, Y, Z] denotes the locking state of a sector. The current locking state of a sector is defined by the state of $\overline{\text{WP}}$ and the two bits of the sector-lock status D[1:0].

SECTOR PROTECTION DETECTION: A software method is available to determine if the sector protection Softlock or Hardlock features are enabled. When the device is in the software product identification mode a read from the I/O0 and I/O1 at address location 00002H within a sector will show if the sector is unlocked, softlocked, or hardlocked.

Table 2. Sector Protection Status

I/O1	I/O0	Sector Protection Status
0	0	Sector Not Locked
0	1	Softlock Enabled
1	0	Hardlock Enabled
1	1	Both Hardlock and Softlock Enabled

READ STATUS REGISTER: The status register indicates the status of device operations and the success/failure of that operation. The Read Status Register command causes subsequent reads to output data from the status register until another command is issued. To return to reading from the memory, issue a Read command.

The status register bits are output on I/O7 - I/O0. The upper byte, I/O15 - I/O8, outputs 00H when a Read Status Register command is issued.

The contents of the status register [SR7:SR0] are latched on the falling edge of OE or CE (whichever occurs last), which prevents possible bus errors that might occur if status register contents change while being read. $\overline{\text{CE}}$ or $\overline{\text{OE}}$ must be toggled with each subsequent status read, or the status register will not indicate completion of a Program or Erase operation.

When the Write State Machine (WSM) is active, SR7 will indicate the status of the WSM; the remaining bits in the status register indicate whether the WSM was successful in performing the preferred operation (see Table 3).

AT49BV6416C(T) [Preliminary]

Table 3. Status Register Bit Definition

WSMS	ESS	ES	PRS	VPPS	PSS	SLS	PLS
7	6	5	4	3	2	1	0
					No	tes	
SR7 WRITE STATE MACHINE STATUS (WSMS) 1 = Ready 0 = Busy						rst to determine Nore checking prog	
SR6 = ERASE SUSPEND STATUS (ESS) 1 = Erase Suspended 0 = Erase In Progress/Completed				both WSMS and		WSM halts exect - ESS bit remains ssued.	
SR5 = ERASE STATUS (ES) 1 = Error in Sector Erase 0 = Successful Sector Erase					has applied the n still unable to ve		
SR4 = PROGRAM STATUS (PRS) 1 = Error in Programming 0 = Successful Programming			When this bit is set to "1", WSM has attempted but failed to program a word				
SR3 = VPP STATUS (VPPS) 1 = VPP Low Detect, Operation Abort 0 = VPP OK			level. The WSM Erase command system if V _{PP} has	l interrogates V _{PF} d sequences hav	de continuous ind level only after the been entered a hed on. The V _{PP} in the WSM.	he Program or nd informs the	
SR2 = PROGRAM SUSPEND STATUS (PSS) 1 = Program Suspended 0 = Program in Progress/Completed			When Program Suspend is issued, WSM halts execution and sets both WSMS and PSS bits to "1". PSS bit remains set to "1" until a Program Resume command is issued.				
1 = Prog/Erase	SR1 = SECTOR LOCK STATUS 1 = Prog/Erase attempted on a locked sector; Operation aborted. 0 = No operation to locked sectors			sectors, this bit	is set by the WS	is attempted to or M. The operation ed to read status	specified is
	SR0 = Plane Status (PLS)					s of the addresse	ed plane.

Note: 1. A Command Sequence Error is indicated when SR1, SR3, SR4 and SR5 are set.

 Table 4. Status Register Device WSMS and Write Status Definition

WSMS (SR7)	PLS (SR0)	Description
0	0	The addressed plane is performing a program/erase operation.
0	1	A plane other than the one currently addressed is performing a program/erase operation.
1	х	No program/erase operation is in progress in any plane. Erase and Program suspend bits (SR6, SR2) indicate whether other planes are suspended.

ERASE SUSPEND/ERASE RESUME: The Erase Suspend command allows the system to interrupt a sector erase or plane erase operation. The erase suspend command does not work with the Chip Erase feature. Using the erase suspend command to suspend a sector erase operation, the system can program or read data from a different sector within the same plane. Since this device is organized into four planes, there is no need to use the erase suspend feature while erasing a sector when you want to read data from a sector in another plane. After the Erase Suspend command is given, the device requires a maximum time of 15 µs to suspend the erase operation. After the erase operation has been suspended, the plane that contains the suspended sector enters the erase-suspend-read mode. The system can then read data or program data to any other sector within the device. An address is not required during the Erase Suspend command. During a sector erase suspend, another sector cannot be erased. To resume the sector erase operation, the system must write the Erase Resume command. The Erase Resume command is a one-bus cycle command, which does require the plane address. Read, Read Status Register, Product ID Entry, Clear Status Register, Program, Program Suspend, Erase Resume, Sector Softlock/Hardlock, Sector Unlock are valid commands during an erase suspend.

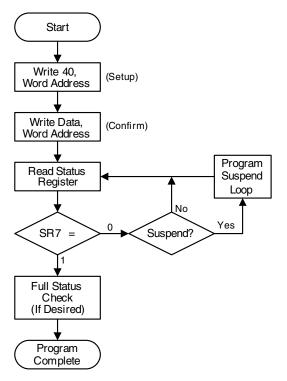
PROGRAM SUSPEND/PROGRAM RESUME: The Program Suspend command allows the system to interrupt a programming operation and then read data from a different word within the memory. After the Program Suspend command is given, the device requires a maximum of 10 µs to suspend the programming operation. After the programming operation has been suspended, the system can then read from any other word within the device. An address is not required during the program suspend operation. To resume the programming operation, the system must write the Program Resume command. The program suspend and resume are one-bus cycle commands. The command sequence for the erase suspend and program suspend are the same, and the command sequence for the erase resume and program resume are the same. Read, Read Status Register, Product ID Entry, Program Resume are valid commands during a Program Suspend.

128-BIT PROTECTION REGISTER: The AT49BV6416C(T) contains a 128-bit register that can be used for security purposes in system design. The protection register is divided into two 64-bit blocks. The two blocks are designated as block A and block B. The data in block A is non-changeable and is programmed at the factory with a unique number. The data in block B is programmed by the user and can be locked out such that data in the block cannot be reprogrammed. To program block B in the protection register, the two-bus cycle Program Protection Register command must be used as shown in the Command Definition in Hex table on page 13. To lock out block B, the two-bus cycle lock protection register command must be used as shown in the Command Definition in Hex table. Data bit D1 must be zero during the second bus cycle. All other data bits during the second bus cycle are don't cares. To determine whether block B is locked out, the Product ID Entry command is given followed by a read operation from address 80H. If data bit D1 is zero, block B is locked. If data bit D1 is one, block B can be reprogrammed. Please see the Protection Register Addressing Table on page 14 for the address locations in the protection register. To read the protection register, the Product ID Entry command is given followed by a normal read operation from an address within the protection register. After determining whether block B is protected or not or reading the protection register, the Read command must be given to return to the read mode.

AT49BV6416C(T) [Preliminary]

CFI: Common Flash Interface (CFI) is a published, standardized data structure that may be read from a flash device. CFI allows system software to query the installed device to determine the configurations, various electrical and timing parameters, and functions supported by the device. CFI is used to allow the system to learn how to interface to the flash device most optimally. The two primary benefits of using CFI are ease of upgrading and second source availability. The command to enter the CFI Query mode is a one-bus cycle command which requires writing data 98h to any address. The CFI Query command can be written when the device is ready to read data or can also be written when the part is in the product ID mode. Once in the CFI Query mode, the system can read CFI data at the addresses given in Table 5 on page 25. To return to the read mode, the read command should be issued.

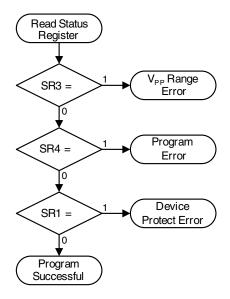
HARDWARE DATA PROTECTION: Hardware features protect against inadvertent programs to the AT49BV6416C(T) in the following ways: (a) V_{CC} sense: if V_{CC} is below 1.8V (typical), the device is reset and the program and erase functions are inhibited. (b) V_{CC} power-on delay: once V_{CC} has reached the V_{CC} sense level, the device will automatically time-out 10 ms (typical) before programming. (c) Program inhibit: holding any one of \overline{OE} low, \overline{CE} high or \overline{WE} high inhibits program cycles. (d) Noise filter: pulses of less than 15 ns (typical) on the \overline{WE} or \overline{CE} inputs will not initiate a program cycle. (e) V_{PP} is less than V_{ILPP} .


INPUT LEVELS: While operating with a 2.7V to 3.6V power supply, the address inputs and control inputs (\overline{OE} , \overline{CE} and \overline{WE}) may be driven from 0 to 2.5V without adversely affecting the operation of the device. The I/O lines can be driven from 0 to $V_{CCQ} + 0.6V$.

OUTPUT LEVELS: For the AT49BV6416C(T), output high levels are equal to V_{CCQ} - 0.1V (not V_{CC}). For 2.7V to 3.6V output levels, V_{CCQ} must be tied to V_{CC} .

Word Program Flowchart

Word Program Procedure

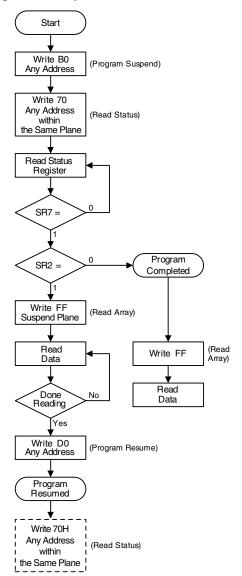

Bus Operation	Command	Comments
Write	Program Setup	Data = 40 Addr = Location to program
Write	Data	Data = Data to program Addr = Location to program
Read	None	Status register data: Toggle CE or OE to update status register
Idle	None	Check SR7 1 = WSM Ready 0 = WSM Busy

Repeat for subsequent Word Program operations.

Full status register check can be done after each program, or after a sequence of program operations.

Write FF after the last operation to set to the Read state.

Full Status Check Flowchart


Full Status Check Procedure

Bus Operation	Command	Comments
Idle	None	Check SR3: 1 = V _{PP} Error
ldle	None	Check SR4: 1 = Data Program Error
ldle	None	Check SR1: 1 = Sector locked; operation aborted

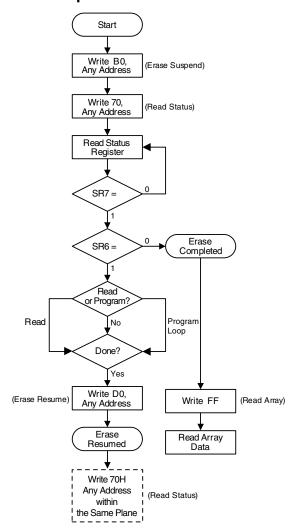
SR3 MUST be cleared before the Write State Machine allows further program attempts.

If an error is detected, clear the status register before continuing operations – only the Clear Status Register command clears the status register error bits.

Program Suspend/Resume Flowchart

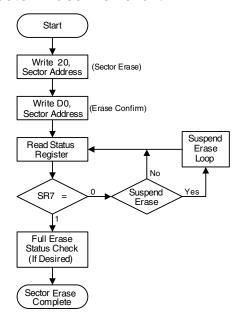
Program Suspend/Resume Procedure

riogram Suspend/nesume riocedure			
Bus Operation	Command	Comments	
Write	Program Suspend	Data = B0 Addr = Sector address to Suspend (SA)	
Write	Read Status	Data = 70 Addr = Any address within the Same Plane	
Read	None	Status register data: Toggle $\overline{\text{CE}}$ or $\overline{\text{OE}}$ to update status register Addr = Any address	
Idle	None	Check SR7 1 = WSM Ready 0 = WSM Busy	
Idle	None	Check SR2 1 = Program suspended 0 = Program completed	
Write	Read Array	Data = FF Addr = Any address within the Suspended Plane	
Read	None	Read data from any sector in the memory other than the one being programmed	
Write	Program Resume	Data = D0 Addr = Any address	


If the Suspend Plane was placed in Read mode:

Write	Read	Return Plane to Status mode:
	Status	Data = 70
		Addr = Any address within the Same Plane

Erase Suspend/Resume Flowchart


Erase Suspend/Resume Procedure

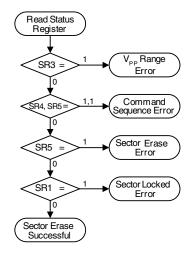
Bus		
Operation	Command	Comments
Write	Erase Suspend	Data = B0 Addr = Any address within the Same Plane
Write	Read Status	Data = 70 Addr = Any address
Read	None	Status register data: Toggle \overline{CE} or \overline{OE} to update status register Addr = Any address within the Same Plane
Idle	None	Check SR7 1 = WSM Ready 0 = WSM Busy
Idle	None	Check SR6 1 = Erase suspended 0 = Erase completed
Write	Read or Program	Data = FF or 40 Addr = Any address
Read or Write	None	Read or program data from/to sector other than the one being erased
Write	Program Resume	Data = D0 Addr = Any address

If the Suspended Plane was placed in Read mode or a Program loop:

Write	Read	Return Plane to Status mode:
	Status	Data = 70
		Addr = Any address within the Same Plane

Sector Erase Flowchart

Sector Erase Procedure


Bus Operation	Command	Comments
Write	Sector Erase Setup	Data = 20 Addr = Sector to be erased (SA)
Write	Erase Confirm	Data = D0 Addr = Sector to be erased (SA)
Read	None	Status register data: Toggle CE or OE to update status register data
Idle	None	Check SR7 1 = WSMS Ready 0 = WSMS Busy

Repeat for subsequent sector erasures.

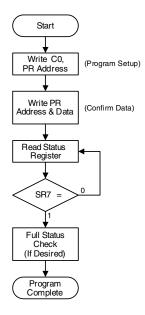
Full status register check can be done after each sector erase, or after a sequence of sector erasures.

Write FF after the last operation to enter read mode.

Full Erase Status Check Flowchart

Full Erase Status Check Procedure

Bus Operation	Command	Comments
Idle	None	Check SR3: 1 = V _{PP} Range Error
Idle	None	Check SR4, SR5: Both 1 = Command Sequence Error
Idle	None	Check SR5: 1 = Sector Erase Error
Idle	None	Check SR1: 1 = Attempted erase of locked sector; erase aborted.

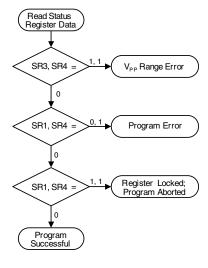

SR1, SR3 must be cleared before the Write State Machine allows further erase attempts.

Only the Clear Status Register command clears SR1, SR3, SR4, SR5. If an error is detected, clear the status register before attempting an erase retry or other error recovery.

Protection Register Programming Flowchart

Protection Register Programming Procedure

		· ·
Bus Operation	Command	Comments
Write	Program PR Setup	Data = C0 Addr = First Location to Program
Write	Protection Program	Data = Data to Program Addr = Location to Program
Read	None	Status register data: Toggle CE or OE to update status register data
Idle	None	Check SR7 1 = WSMS Ready 0 = WSMS Busy


Program Protection Register operation addresses must be within the protection register address space. Addresses outside this space will return an error.

Repeat for subsequent programming operations.

Full status register check can be done after each program, or after a sequence of program operations.

Write FF after the last operation to return to the Read mode.

Full Status Check Flowchart

Full Status Check Procedure

Bus Operation	Command	Comments
Idle	None	Check SR1, SR3, SR4: 0,1,1 = V _{PP} Range Error
Idle	None	Check SR1, SR3, SR4: 0,0,1 = Programming Error
Idle	None	Check SR1, SR3, SR4: 1, 0,1 = Sector locked; operation aborted

SR3 must be cleared before the Write State Machine allows further program attempts.

Only the Clear Status Register command clears SR1, SR3, SR4. If an error is detected, clear the status register before attempting a program retry or other error recovery.

Command Definition in Hex⁽¹⁾

Command	Bus	1st Bus Cycle		2nd Bus Cycle		3rd Bus Cycle	
Sequence	Cycles	Addr	Data	Addr	Data	Addr	Data
Read	1	PA ⁽²⁾	FF				
Chip Erase	2	XX	21	Addr	D0		
Plane Erase	2	XX	22	Addr	D0		
Sector Erase	2	SA ⁽³⁾	20	SA ⁽³⁾	D0		
Word Program	2	Addr ⁽⁴⁾	40/10	Addr ⁽⁴⁾	D _{IN}		
Dual Word Program ⁽⁸⁾	3	Addr0	E0	Addr0	D _{IN0}	Addr1	D _{IN1}
Erase/Program Suspend	1	XX	В0				
Erase/Program Resume	1	PA ⁽²⁾	D0				
Product ID Entry ⁽⁹⁾	1	PA ⁽²⁾	90				
Sector Softlock	2	SA ⁽³⁾	60	SA ⁽³⁾	01		
Sector Hardlock	2	SA ⁽³⁾	60	SA ⁽³⁾	2F		
Sector Unlock	2	SA ⁽³⁾	60	SA ⁽³⁾	D0		
Read Status Register	2	PA ⁽²⁾	70	XX	D _{OUT} ⁽⁵⁾		
Clear Status Register	1	XX	50				
Program Protection Register- Block B	2	XX ⁽⁷⁾	C0	Addr	D _{IN}		
Lock Protection Register – Sector B	2	80	C0	80	FFFD		
Status of Sector B Protection	2	PA ⁽²⁾	90	80	D _{OUT} ⁽⁶⁾		
CFI Query	1	XX	98				

Notes:

- 1. The DATA FORMAT shown for each bus cycle is as follows; I/O7 I/O0 (Hex). I/O15 I/O8 are don't care. The ADDRESS FORMAT shown for each bus cycle is as follows: A7 A0 (Hex). Address A21 through A8 are don't care.
- 2. PA is the plane address (A21 A20). Any address within a plane can be used.
- 3. SA = sector address. Any word address within a sector can be used to designate the sector address (see pages 15 18 for details).
- 4. The first bus cycle address should be the same as the word address to be programmed.
- 5. The status register bits are output on I/O7 I/O0.
- 6. If data bit D1 is "0", sector B is locked. If data bit D1 is "1", sector B can be reprogrammed.
- 7. Any address within the user programmable protection register region.
- 8. This fast programming option enables the user to program two words in parallel only when $V_{PP} = 12V$. The addresses, Addr0 and Addr1, of the two words, D_{IN0} and D_{IN1} , must only differ in address A0. This command should be used during manufacturing purposes only.
- 9. The manufacturer code is read from address 0000H, and the device code is read from address 0001H.

Absolute Maximum Ratings*

Temperature under Bias	55°C to +125°C
Storage Temperature	65°C to +150°C
All Input Voltages Except V _{PP} (Including NC Pins) with Respect to Ground	0.6V to +2.5V
V _{PP} Input Voltage with Respect to Ground	0V to 12.5V
All Output Voltages with Respect to Ground	0.6V to V _{CCQ} + 0.6V

*NOTICE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Protection Register Addressing Table

Word	Use	Block	A7	A 6	A 5	A 4	А3	A2	A 1	A0
0	Factory	Α	1	0	0	0	0	0	0	1
1	Factory	Α	1	0	0	0	0	0	1	0
2	Factory	Α	1	0	0	0	0	0	1	1
3	Factory	Α	1	0	0	0	0	1	0	0
4	User	В	1	0	0	0	0	1	0	1
5	User	В	1	0	0	0	0	1	1	0
6	User	В	1	0	0	0	0	1	1	1
7	User	В	1	0	0	0	1	0	0	0

Note: 1. All address lines not specified in the above table must be 0 when accessing the Protection Register, i.e., A21 - A8 = 0.

Memory Organization - AT49BV6416C

			x16
Plane	Sector	Size (Words)	Address Range (A21 - A0)
Α	SA0	4K	00000 - 00FFF
Α	SA1	4K	01000 - 01FFF
Α	SA2	4K	02000 - 02FFF
Α	SA3	4K	03000 - 03FFF
Α	SA4	4K	04000 - 04FFF
Α	SA5	4K	05000 - 05FFF
Α	SA6	4K	06000 - 06FFF
Α	SA7	4K	07000 - 07FFF
Α	SA8	32K	08000 - 0FFFF
Α	SA9	32K	10000 - 17FFF
Α	SA10	32K	18000 - 1FFFF
A	SA11	32K	20000 - 27FFF
A	SA12	32K	28000 - 2FFFF
A	SA12	32K	30000 - 37FFF
A	SA13	32K	38000 - 37FFF
	_		
Α	SA15	32K	40000 - 47FFF
Α .	SA16	32K	48000 - 4FFFF
Α	SA17	32K	50000 - 57FFF
Α	SA18	32K	58000 - 5FFFF
Α	SA19	32K	60000 - 67FFF
Α	SA20	32K	68000 - 6FFFF
Α	SA21	32K	70000 - 77FFF
Α	SA22	32K	78000 - 7FFFF
Α	SA23	32K	80000 - 87FFF
Α	SA24	32K	88000 - 8FFFF
Α	SA25	32K	90000 - 97FFF
Α	SA26	32K	98000 - 9FFFF
Α	SA27	32K	A0000 - A7FFF
Α	SA28	32K	A8000 - AFFFF
Α	SA29	32K	B0000 - B7FFF
Α	SA30	32K	B8000 - BFFFF
Α	SA31	32K	C0000 - C7FFF
Α	SA32	32K	C8000 - CFFFF
Α	SA33	32K	D0000 - D7FFF
Α	SA34	32K	D8000 - DFFFF
A	SA35	32K	E0000 - E7FFF
A	SA36	32K	E8000 - EFFFF
A	SA37	32K	F0000 - F7FFF
A	SA37	32K	F8000 - FFFFF
В	SA39	32K	100000 - 107FFF
В	SA40	32K	108000 - 10FFFF
B	SA41	32K	110000 - 117FFF
B	SA42	32K	118000 - 11FFFF
В	SA43	32K	120000 - 127FFF
В	SA44	32K	128000 - 12FFFF

Memory Organization - AT49BV6416C (Continued)

			x16
Plane	Sector	Size (Words)	Address Range (A21 - A0)
В	SA45	32K	130000 - 137FFF
В	SA46	32K	138000 - 13FFFF
В	SA47	32K	140000 - 147FFF
В	SA48	32K	148000 - 14FFFF
В	SA49	32K	150000 - 157FFF
В	SA50	32K	158000 - 15FFFF
В	SA51	32K	160000 - 167FFF
В	SA52	32K	168000 - 16FFFF
В	SA53	32K	170000 - 177FFF
В	SA54	32K	178000 - 17FFFF
В	SA55	32K	180000 - 187FFF
В	SA56	32K	188000 - 18FFFF
В	SA57	32K	190000 - 197FFF
В	SA58	32K	198000 - 19FFFF
В	SA59	32K	1A0000 - 1A7FFF
В	SA60	32K	1A8000 - 1AFFFF
В	SA61	32K	1B0000 - 1B7FFF
В	SA62	32K	1B8000 - 1BFFFF
В	SA63	32K	1C0000 - 1C7FFF
В	SA64	32K	1C8000 - 1CFFFF
В	SA65	32K	1D0000 - 1D7FFF
В	SA66	32K	1D8000 - 1DFFFF
В	SA67	32K	1E0000 - 1E7FFF
В	SA68	32K	1E8000 - 1EFFFF
В	SA69	32K	1F0000 - 1F7FFF
В	SA70	32K	1F8000 - 1FFFFF
С	SA71	32K	200000 - 207FFF
С	SA72	32K	208000 - 20FFFF
С	SA72	32K	210000 - 217FFF
С	SA74	32K	218000 - 21FFFF
С	SA75	32K	220000 - 227FFF
С	SA76	32K	228000 - 22FFFF
С	SA77	32K	230000 - 237FFF
С			238000 - 237FFF 238000 - 23FFFF
	SA78	32K	238000 - 23FFFF 240000 - 247FFF
С	SA79	32K	
С	SA80	32K 32K	248000 - 24FFFF
С	SA81		250000 - 257FFF 258000 - 25FFFF
С	SA82	32K	
С	SA83	32K	260000 - 267FFF
С	SA84	32K	268000 - 26FFFF
С	SA85	32K	270000 - 277FFF
С	SA86	32K	278000 - 27FFFF
С	SA87	32K	280000 - 287FFF
С	SA88	32K	288000 - 28FFFF
С	SA89	32K	290000 - 297FFF

Memory Organization – AT49BV6416C (Continued)

_	0.9		` ,
			x16
Plane	Sector	Size (Words)	Address Range (A21 - A0)
С	SA90	32K	298000 - 29FFFF
С	SA91	32K	2A0000 - 2A7FFF
С	SA92	32K	2A8000 - 2AFFFF
С	SA93	32K	2B0000 - 2B7FFF
С	SA94	32K	2B8000 - 2BFFFF
С	SA95	32K	2C0000 - 2C7FFF
С	SA96	32K	2C8000 - 2CFFFF
С	SA97	32K	2D0000 - 2D7FFF
С	SA98	32K	2D8000 - 2DFFFF
С	SA99	32K	2E0000 - 2E7FFF
С	SA100	32K	2E8000 - 2EFFFF
С	SA101	32K	2F0000 - 2F7FFF
С	SA102	32K	2F8000 - 2FFFFF
D	SA103	32K	300000 - 307FFF
D	SA104	32K	308000 - 30FFFF
D	SA105	32K	310000 - 317FFF
D	SA106	32K	318000 - 31FFFF
D	SA107	32K	320000 - 327FFF
D	SA108	32K	328000 - 32FFFF
D	SA109	32K	330000 - 337FFF
D	SA110	32K	338000 - 33FFFF
D	SA111	32K	340000 - 347FFF

Memory Organization – AT49BV6416C (Continued)

			,
	_		x16
Plane	Sector	Size (Words)	Address Range (A21 - A0)
D	SA112	32K	348000 - 34FFFF
D	SA113	32K	350000 - 357FFF
D	SA114	32K	358000 - 35FFFF
D	SA115	32K	360000 - 367FFF
D	SA116	32K	368000 - 36FFFF
D	SA117	32K	370000 - 377FFF
D	SA118	32K	378000 - 37FFFF
D	SA119	32K	380000 - 387FFF
D	SA120	32K	388000 - 38FFFF
D	SA121	32K	390000 - 397FFF
D	SA122	32K	398000 - 39FFFF
D	SA123	32K	3A0000 - 3A7FFF
D	SA124	32K	3A8000 - 3AFFFF
D	SA125	32K	3B0000 - 3B7FFF
D	SA126	32K	3B8000 - 3BFFFF
D	SA127	32K	3C0000 - 3C7FFF
D	SA128	32K	3C8000 - 3CFFFF
D	SA129	32K	3D0000 - 3D7FFF
D	SA130	32K	3D8000 - 3DFFFF
D	SA131	32K	3E0000 - 3E7FFF
D	SA132	32K	3E8000 - 3EFFFF
D	SA133	32K	3F0000 - 3F7FFF
D	SA134	32K	3F8000 - 3FFFFF

Memory Organization - AT49BV6416CT

			x16
Plane	Sector	Size (Words)	Address Range (A21 - A0)
D	SA0	32K	00000 - 07FFF
D	SA1	32K	08000 - 0FFFF
D	SA2	32K	10000 - 17FFF
D	SA3	32K	18000 - 1FFFF
D	SA4	32K	20000 - 27FFF
D	SA5	32K	28000 - 2FFFF
D	SA6	32K	30000 - 37FFF
D	SA7	32K	38000 - 3FFFF
D	SA8	32K	40000 - 47FFF
D	SA9	32K	48000 - 4FFFF
D	SA10	32K	50000 - 57FFF
D	SA11	32K	58000 - 5FFFF
D	SA12	32K	60000 - 67FFF
D	SA13	32K	68000 - 6FFFF
D	SA14	32K	70000 - 77FFF
D	SA15	32K	78000 - 7FFFF
D	SA16	32K	80000 - 87FFF
D	SA17	32K	88000 - 8FFFF
D	SA18	32K	90000 - 97FFF
D	SA19	32K	98000 - 9FFFF
D	SA20	32K	A0000 - A7FFF
D	SA21	32K	A8000 - AFFFF
D	SA22	32K	B0000 - B7FFF
D	SA23	32K	B8000 - BFFFF
D	SA24	32K	C0000 - C7FFF
D	SA25	32K	C8000 - CFFFF
D	SA26	32K	D0000 - D7FFF
D	SA27	32K	D8000 - DFFFF
D	SA28	32K	E0000 - E7FFF
D	SA29	32K	E8000 - EFFFF
D	SA30	32K	F0000 - F7FFF
D	SA31	32K	F8000 - FFFFF
С	SA32	32K	100000 - 107FFF
С	SA33	32K	108000 - 10FFFF
С	SA34	32K	110000 - 117FFF
С	SA35	32K	118000 - 11FFFF
С	SA36	32K	120000 - 127FFF
С	SA37	32K	128000 - 12FFFF
С	SA38	32K	130000 - 137FFF
С	SA39	32K	138000 - 13FFFF
С	SA40	32K	140000 - 147FFF
С	SA41	32K	148000 - 14FFFF
С	SA42	32K	150000 - 157FFF
С	SA43	32K	158000 - 15FFFF
	0,110	0210	100000 101111

Memory Organization – AT49BV6416CT (Continued)

			x16
Plane	Sector	Size (Words)	Address Range (A21 - A0)
С	SA44	32K	160000 - 167FFF
С	SA45	32K	168000 - 16FFFF
С	SA46	32K	170000 - 177FFF
С	SA47	32K	178000 - 17FFFF
С	SA48	32K	180000 - 187FFF
С	SA49	32K	188000 - 18FFFF
С	SA50	32K	190000 - 197FFF
С	SA51	32K	198000 - 19FFFF
С	SA52	32K	1A0000 - 1A7FFF
С	SA53	32K	1A8000 - 1AFFFF
С	SA54	32K	1B0000 - 1B7FFF
С	SA55	32K	1B8000 - 1BFFFF
С	SA56	32K	1C0000 - 1C7FFF
С	SA57	32K	1C8000 - 1CFFFF
С	SA58	32K	1D0000 - 1D7FFF
С	SA59	32K	1D8000 - 1DFFFF
С	SA60	32K	1E0000 - 1E7FFF
С	SA61	32K	1E8000 - 1EFFFF
С	SA62	32K	1F0000 - 1F7FFF
С	SA63	32K	1F8000 - 1FFFFF
В	SA64	32K	200000 - 207FFF
В	SA65	32K	208000 - 20FFFF
В	SA66	32K	210000 - 217FFF
В	SA67	32K	218000 - 21FFFF
В	SA68	32K	220000 - 227FFF
В	SA69	32K	228000 - 22FFFF
В	SA70	32K	230000 - 237FFF
В	SA71	32K	238000 - 23FFFF
В	SA72	32K	240000 - 247FFF
В	SA73	32K	248000 - 24FFFF
В	SA74	32K	250000 - 257FFF
В	SA75	32K	258000 - 25FFFF
В	SA76	32K	260000 - 267FFF
В	SA77	32K	268000 - 26FFFF
В	SA78	32K	270000 - 277FFF
В	SA79	32K	278000 - 27FFFF
В	SA80	32K	280000 - 287FFF
В	SA81	32K	288000 - 28FFFF
В	SA82	32K	290000 - 297FFF
В	SA83	32K	298000 -29FFFF
В	SA84	32K	2A0000 - 2A7FFF
В	SA85	32K	2A8000 - 2AFFFF
В	SA86	32K	2B0000 - 2B7FFF
В	SA87	32K	2B8000 - 2BFFFF

Memory Organization – AT49BV6416CT (Continued)

	0.94		,
			x16
Plane	Sector	Size (Words)	Address Range (A21 - A0)
В	SA88	32K	2C0000 - 2C7FFF
В	SA89	32K	2C8000 - 2CFFFF
В	SA90	32K	2D0000 - 2D7FFF
В	SA91	32K	2D8000 - 2DFFFF
В	SA92	32K	2E0000 - 2E7FFF
В	SA93	32K	2E8000 - 2EFFFF
В	SA94	32K	2F0000 - 2F7FFF
В	SA95	32K	2F8000 - 2FFFFF
Α	SA96	32K	300000 - 307FFF
Α	SA97	32K	308000 - 30FFFF
Α	SA98	32K	310000 - 317FFF
Α	SA99	32K	318000 - 31FFFF
Α	SA100	32K	320000 - 327FFF
Α	SA101	32K	328000 - 32FFFF
Α	SA102	32K	330000 - 337FFF
Α	SA103	32K	338000 - 33FFFF
Α	SA104	32K	340000 - 347FFF
Α	SA105	32K	348000 - 34FFFF
Α	SA106	32K	350000 - 357FFF
Α	SA107	32K	358000 - 35FFFF
Α	SA108	32K	360000 - 367FFF
Α	SA109	32K	368000 - 36FFFF
Α	SA110	32K	370000 - 377FFF
Α	SA111	32K	378000 - 37FFFF

Memory Organization – AT49BV6416CT (Continued)

	1		
Plane	Sector	Size (Words)	x16 Address Range (A21 - A0)
Α	SA112	32K	380000 - 387FFF
Α	SA113	32K	388000 - 38FFFF
Α	SA114	32K	390000 - 397FFF
Α	SA115	32K	398000 - 39FFFF
Α	SA116	32K	3A0000 - 3A7FFF
Α	SA117	32K	3A8000 - 3AFFFF
Α	SA118	32K	3B0000 - 3B7FFF
Α	SA119	32K	3B8000 - 3BFFFF
Α	SA120	32K	3C0000 - 3C7FFF
Α	SA121	32K	3C8000 - 3CFFFF
Α	SA122	32K	3D0000 - 3D7FFF
Α	SA123	32K	3D8000 - 3DFFFF
Α	SA124	32K	3E0000 - 3E7FFF
Α	SA125	32K	3E8000 - 3EFFFF
Α	SA126	32K	3F0000 - 3F7FFF
Α	SA127	4K	3F8000 - 3F8FFF
Α	SA128	4K	3F9000 - 3F9FFF
Α	SA129	4K	3FA000 - 3FAFFF
Α	SA130	4K	3FB000 - 3FBFFF
Α	SA131	4K	3FC000 - 3FCFFF
Α	SA132	4K	3FD000 - 3FDFFF
Α	SA133	4K	3FE000 - 3FEFFF
Α	SA134	4K	3FF000 - 3FFFFF

DC and AC Operating Range

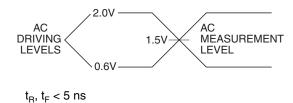
		AT49BV6416C(T)-70
Operating Temperature (Case)	Industrial	-40°C - 85°C
V _{CC} Power Supply	•	2.7V - 3.6V

Operating Modes

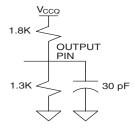
Mode	CE	OE	WE	RESET	$V_{PP}^{(4)}$	Ai	I/O
Read	$V_{\rm IL}$	V _{IL}	V _{IH}	V _{IH}	Х	Ai	D _{OUT}
Program/Erase ⁽³⁾	V _{IL}	V _{IH}	V _{IL}	V _{IH}	V _{IHPP} ⁽⁵⁾	Ai	D _{IN}
Standby/Program Inhibit	V _{IH}	X ⁽¹⁾	х	V _{IH}	х	×	High Z
	Х	Х	V _{IH}	V _{IH}	Х		
Program Inhibit	Х	V _{IL}	Х	V _{IH}	Х		
	Х	Х	Х	Х	V _{ILPP} ⁽⁶⁾		
Output Disable	Х	V _{IH}	Х	V _{IH}	Х		High Z
Reset	Х	Х	Х	V _{IL}	Х	Х	High Z
Product Identification							
Coffee				V		A0 = V _{IL} , A1 - A21 = V _{IL}	Manufacturer Code ⁽³⁾
Software				V _{IH}		A0 = V _{IH} , A1 - A21 = V _{IL}	Device Code ⁽³⁾

Notes:

- 1. X can be VIL or VIH.
- 2. Refer to AC programming waveforms.
- 3. Manufacturer Code: 001FH; Device Code: 00C5H AT49BV6416C; 00DFH AT49BV6416CT
- 4. The VPP pin can be tied to V_{CC} . For faster program/erase operations, V_{PP} can be set to 12.0V \pm 0.5V.
- 5. V_{IHPP} (min) = 1.65V.
- 6. V_{ILPP} (max) = 0.7V.



DC Characteristics


Symbol	Parameter	Condition	Min	Max	Units
ILI	Input Load Current	V _{IN} = 0V to V _{CC}		1	μA
I _{LO}	Output Leakage Current	$V_{I/O} = 0V$ to V_{CC}		1	μΑ
I _{SB1}	V _{CC} Standby Current CMOS	$\overline{\text{CE}} = V_{\text{CCQ}} - 0.3V \text{ to } V_{\text{CC}}$		25	μΑ
I _{CC} ⁽¹⁾	V _{CC} Active Current	f = 5 MHz; I _{OUT} = 0 mA		30	mA
I _{CCRE}	V _{CC} Read While Erase Current	f = 5 MHz; I _{OUT} = 0 mA		60	mA
I _{CCRW}	V _{CC} Read While Write Current	f = 5 MHz; I _{OUT} = 0 mA		60	mA
V _{IL}	Input Low Voltage			0.6	V
V _{IH}	Input High Voltage		V _{CCQ} - 0.6		V
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA		0.45	V
V _{OH}	Output High Voltage	$I_{OH} = -100 \ \mu A; \ V_{CCQ} = 2.2 V - 3.6 V$	V _{CCQ} - 0.1		V

Note: 1. In the erase mode, I_{CC} is 35 mA.

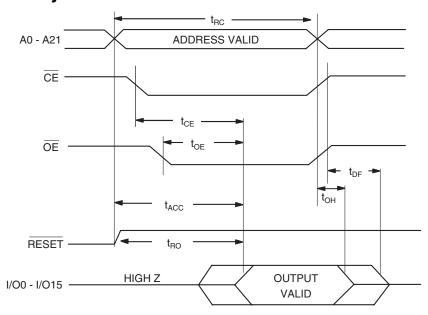
Input Test Waveforms and Measurement Level

Output Test Load

Pin Capacitance

 $f = 1 \text{ MHz}, T = 25^{\circ}C^{(1)}$

	Тур	Max	Units	Conditions
C _{IN}	4	6	pF	$V_{IN} = 0V$
C _{OUT}	8	12	pF	$V_{OUT} = 0V$


Note: 1. This parameter is characterized and is not 100% tested.

AT49BV6416C(T) [Preliminary]

AC Asynchronous Read Timing Characteristics

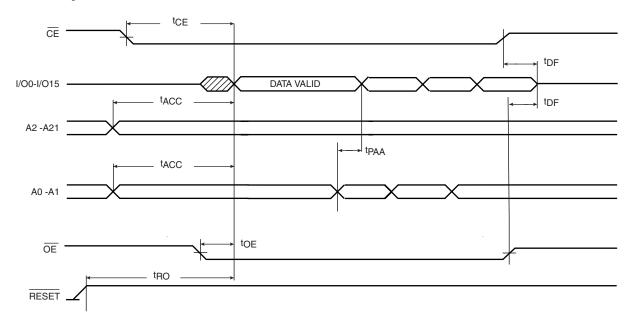
Symbol	Parameter	Min	Max	Units
t _{RC}	Read Cycle Time	70		ns
t _{ACC}	Access, Address to Data Valid		70	ns
t _{CE}	Access, CE to Data Valid		70	ns
t _{OE}	OE to Data Valid		20	ns
t _{DF}	CE, OE High to Data Float		25	ns
t _{OH}	Output Hold from OE, CE or Address, whichever Occurs First	0		ns
t _{RO}	RESET to Output Delay		150	ns

Asynchronous Read Cycle Waveform(1)(2)(3)

- Notes: 1. $\overline{\underline{CE}}$ may be delayed up to t_{ACC} t_{CE} after the address transition without impact on t_{ACC} .

 2. $\overline{\underline{OE}}$ may be delayed up to t_{CE} t_{OE} after the falling edge of $\overline{\underline{CE}}$ without impact on t_{CE} or by t_{ACC} t_{OE} after an address change without impact on t_{ACC} .

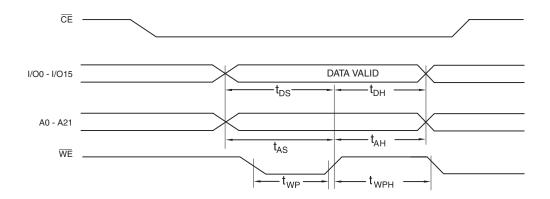
 3. t_{DF} is specified from \overrightarrow{OE} or \overrightarrow{CE} , whichever occurs first (CL = 5 pF).



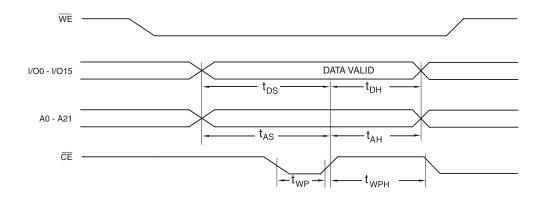
AC Asynchronous Read Timing Characteristics

Symbol	Parameter	Min	Max	Units
t _{ACC}	Access, Address to Data Valid		70	ns
t _{CE}	Access, CE to Data Valid		70	ns
t _{OE}	OE to Data Valid		20	ns
t _{DF}	CE, OE High to Data Float		25	ns
t _{RO}	RESET to Output Delay		150	ns
t _{PAA}	Page Address Access Time		20	ns

Page Read Cycle Waveform



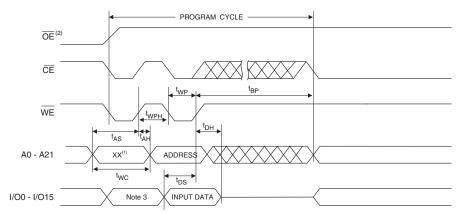
AC Word Load Characteristics

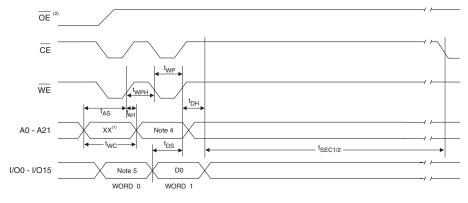

Symbol	Parameter	Min	Max	Units
t _{AS}	Address Setup Time to WE and CE High	50		ns
t _{AH}	Address Hold Time	0		ns
t _{DS}	Data Setup Time	50		ns
t _{DH}	Data Hold Time	0		ns
t_{WP}	CE or WE Low Pulse Width	35		ns
t _{WPH}	CE or WE High Pulse Width	25		ns

AC Word Load Waveforms

WE Controlled

CE Controlled




Program Cycle Characteristics

Symbol	Parameter	Min	Тур	Max	Units
t _{BP}	Word Programming Time		15		μs
t _{SEC1}	Sector Erase Cycle Time (4K word sectors)		200		ms
t _{SEC2}	Sector Erase Cycle Time (32K word sectors)		700		ms
t _{ES}	Erase Suspend Time			15	μs
t _{PS}	Program Suspend Time			10	μs
t _{ERES}	Delay between Erase Resume and Erase Suspend	500			μs

Program Cycle Waveforms

Sector, Plane or Chip Erase Cycle Waveforms

- Notes: 1. Any address can be used to load data.
 - 2. \overline{OE} must be high only when \overline{WE} and \overline{CE} are both low.
 - 3. The data can be 40H or 10H.
 - 4. For chip erase, any address can be used. For plane erase or sector erase, the address depends on what plane or sector is
 - 5. For chip erase, the data should be 21H, for plane erase, the data should be 22H, and for sector erase, the data should be 20H.

AT49BV6416C(T) [Preliminary]

Table 5. Common Flash Interface Definition for AT49BV6416C(T)

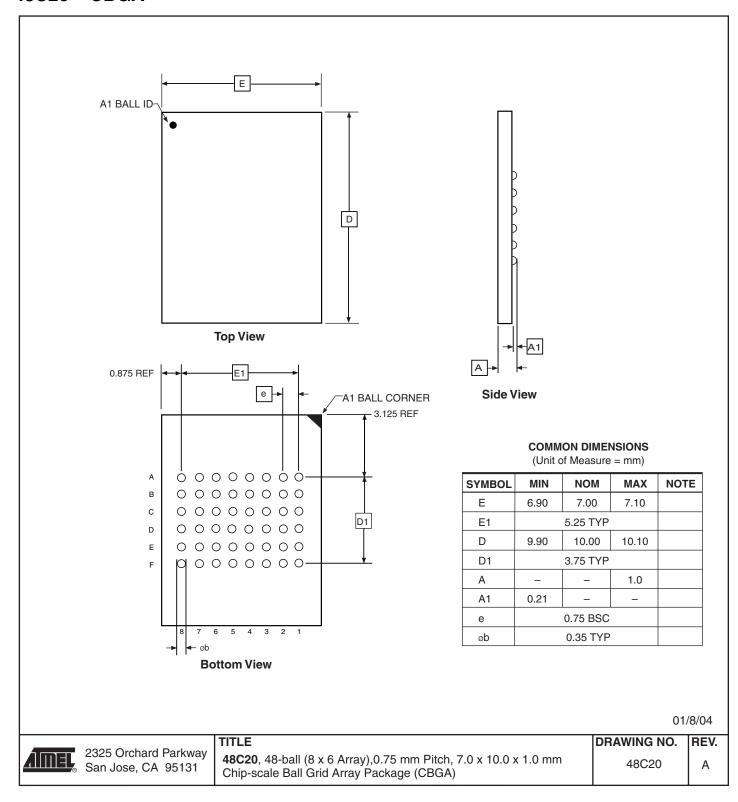
Address	AT49BV6416CT	AT49BV6416C	Comments
10h	0051h	0051h	"Q"
11h	0052h	0052h	"R"
12h	0059h	0059h	"Y"
13h	0003h	0003h	
14h	0000h	0000h	
15h	0041h	0041h	
16h	0000h	0000h	
17h	0000h	0000h	
18h	0000h	0000h	
19h	0000h	0000h	
1Ah	0000h	0000h	
1Bh	0027h	0027h	VCC min write/erase
1Ch	0036h	0036h	VCC max write/erase
1Dh	00B5h	00B5h	VPP min voltage
1Eh	00C5h	00C5h	VPP max voltage
1Fh	0004h	0004h	Typ word write – 15 μs
20h	0000h	0000h	
21h	0009h	0009h	Typ block erase – 500 ms
22h	0010h	0010h	Typ chip erase – 64,300 ms
23h	0004h	0004h	Max word write/typ time
24h	0000h	0000h	n/a
25h	0003h	0003h	Max block erase/typ block erase
26h	0003h	0003h	Max chip erase/ typ chip erase
27h	0017h	0017h	Device size
28h	0001h	0001h	x16 device
29h	0000h	0000h	x16 device
2Ah	0000h	0000h	Multiple byte write not supported
2Bh	0000h	0000h	Multiple byte write not supported
2Ch	0002h	0002h	2 regions, x = 2
2Dh	007Eh	0007h	64K bytes, Y = 126 (Top); 8K bytes, Y = 7 (Bottom)
2Eh	0000h	0000h	64K bytes, Y = 126 (Top); 8K bytes, Y = 7 (Bottom)
2Fh	0000h	0020h	64K bytes, Z = 256 (Top); 8K bytes, Z = 32 (Bottom)
30h	0001h	0000h	64K bytes, Z = 256 (Top); 8K bytes, Z = 32 (Bottom)
31h	0007h	007Eh	8K bytes, Y = 7 (Top); 64K bytes, Y = 126 (Bottom)
32h	0000h	0000h	8K bytes, Y = 7 (Top); 64K bytes, Y = 126 (Bottom)
33h	0020h	0000h	8K bytes, Z = 32 (Top);64K bytes, Z = 256 (Bottom)
34h	0000h	0001h	8K bytes, Z = 32 (Top);64K bytes, Z = 256 (Bottom)

Table 5. Common Flash Interface Definition for AT49BV6416C(T) (Continued)

Address	AT49BV6416CT	AT49BV6416C	Comments
		VENDOR SPECIFIC	EXTENDED QUERY
41h	0050h	0050h	"P"
42h	0052h	0052h	"R"
43h	0049h	0049h	"ļ"
44h	0031h	0031h	Major version number, ASCII
45h	0030h	0030h	Minor version number, ASCII
46h	00AFh	00AFh	Bit 0 – chip erase supported, 0 – no, 1 – yes Bit 1 – erase suspend supported, 0 – no, 1 – yes Bit 2 – program suspend supported, 0 – no, 1 – yes Bit 3 – simultaneous operations supported, 0 – no, 1 – yes Bit 4 – burst mode read supported, 0 – no, 1 – yes Bit 5 – page mode read supported, 0 – no, 1 – yes Bit 6 – queued erase supported, 0 – no, 1 – yes Bit 7 – protection bits supported, 0 – no, 1 – yes
47h	0000h	0001h	Bit 0 – top ("0") or bottom ("1") boot block device Undefined bits are "0"
48h	0000h	0000h	Bit 0 – 4 word linear burst with wrap around, 0 – no, 1 – yes Bit 1 – 8 word linear burst with wrap around, 0 – no, 1 – yes Bit 2 – 16 word linear burst with wrap around, 0 – no, 1 – yes Bit 3 – continuous burst, 0 – no, 1 – yes Undefined bits are "0"
49h	0001h	0001h	Bit 0 – 4 word page, 0 – no, 1 – yes Bit 1 – 8 word page, 0 – no, 1 – yes Undefined bits are "0"
4Ah	0080h	0080h	Location of protection register lock byte, the section's first byte
4Bh	0003h	0003h	# of bytes in the factory prog section of prot register – 2*n
4Ch	0003h	0003h	# of bytes in the user prog section of prot register – 2*n

AT49BV6416C(T) Ordering Information

t _{ACC} (ns)	I _{CC} (mA)				
	Active	Standby	Ordering Code	Package	Operation Range
70	30	0.025	AT49BV6416C-70CI	48C20	Industrial (-40° to 85°C)
70	30	0.025	AT49BV6416CT-70CI	48C20	Industrial (-40° to 85°C)


Package Type			
48C20	48-ball, Plastic Chip-size Ball Grid Array Package (CBGA)		

Packaging Information – AT49BV6416C(T)

48C20 - CBGA

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311

Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland

Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong

Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18

Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00

Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland

Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine

BP 123

38521 Saint-Egreve Cedex, France

Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2004. All rights reserved. Atmel® and combinations thereof are the registered trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be the trademarks of others.

